Числовые ряды: определения, свойства, признаки сходимости, примеры, решения. Признак даламбера сходимости знакоположительных рядов

Числовые ряды: определения, свойства, признаки сходимости, примеры, решения. Признак даламбера сходимости знакоположительных рядов

Признак сходимости Даламбера

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения . Предельный признак сравнения применяется тогда, когда в общем члене ряда: 1) В знаменателе находится многочлен. 2) Многочлены находятся и в числителе и в знаменателе. 3) Один или оба многочлена могут быть под корнем.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например,,и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. Что такое факториал? Ничего сложного, факториал – это просто свёрнутая запись произведения: ……

! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера : Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему:, то: а) Прирядсходится расходится признак не дает ответа . Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.

У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений . Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться.

Радикальный признак Коши

Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел:, то: а) Прирядсходится . В частности, ряд сходится при . б) Прирядрасходится . В частности, ряд расходится при . в) Припризнак не дает ответа . Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера нам тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн» . Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.

Признаки сходимости рядов.
Признак Даламбера. Признаки Коши

Работайте, работайте – а понимание придёт потом
Ж.Л. Даламбер


Всех поздравляю с началом учебного года! Сегодня 1 сентября, и я решил в честь праздника познакомить читателей с тем, что вы давно с нетерпением ждали и жаждали узнать – признаками сходимости числовых положительных рядов . Праздник Первое сентября и мои поздравления всегда актуальны, ничего страшного, если на самом деле за окном лето, вы же сейчас в третий раз пересдаете экзамен учитесь, если зашли на эту страничку!

Для тех, кто только начинает изучать ряды, рекомендую для начала ознакомиться со статьей Числовые ряды для чайников . Собственно, данная телега является продолжением банкета. Итак, сегодня на уроке мы рассмотрим примеры и решения по темам:

Одним из распространенных признаков сравнения, который встречается в практических примерах, является признак Даламбера. Признаки Коши встречаются реже, но тоже весьма популярны. Как всегда, постараюсь изложить материал просто, доступно и понятно. Тема не самая сложная, и все задания в известной степени трафаретны.

Признак сходимости Даламбера

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос:
Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения . Предельный признак сравнения применяется тогда, когда в общем члене ряда:

1) В знаменателе находится многочлен.
2) Многочлены находятся и в числителе и в знаменателе.
3) Один или оба многочлена могут быть под корнем.
4) Многочленов и корней, разумеется, может быть и больше.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на уроке Числовая последовательность и её предел . Впрочем, не помешает снова раскинуть скатерть-самобранку:








! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера : Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то:
а) При ряд сходится
б) При ряд расходится
в) При признак не дает ответа . Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения .

У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений . Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться.

А сейчас долгожданные примеры.

Пример 1


Мы видим, что в общем члене ряда у нас есть , а это верная предпосылка того, что нужно использовать признак Даламбера. Сначала полное решение и образец оформления, комментарии ниже.

Используем признак Даламбера:


сходится.

(1) Составляем отношение следующего члена ряда к предыдущему: . Из условия мы видим, что общий член ряда . Для того, чтобы получить следующий член ряда необходимо вместо подставить : .
При определенном опыте решения этот шаг можно пропускать.
(3) В числителе раскрываем скобки. В знаменателе выносим четверку из степени.
(4) Сокращаем на . Константу выносим за знак предела. В числителе в скобках приводим подобные слагаемые.
(5) Неопределенность устраняется стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.
(6) Почленно делим числители на знаменатели, и указываем слагаемые, которые стремятся к нулю.
(7) Упрощаем ответ и делаем пометку, что с выводом о том, что, по признаку Даламбера исследуемый ряд сходится.

В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-й степени. Что делать, если там многочлен 3-й, 4-й или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения.

Пример 2

Возьмём похожий ряд и исследуем его на сходимость

Сначала полное решение, потом комментарии:

Используем признак Даламбера:


Таким образом, исследуемый ряд сходится .

(1) Составляем отношение .
(2) Избавляемся от четырехэтажности дроби.
(3) Рассмотрим выражение в числителе и выражение в знаменателе. Мы видим, что в числителе нужно раскрывать скобки и возводить в четвертую степень: , чего делать совершенно не хочется. А для тех, кто не знаком с биномом Ньютона , эта задача окажется ещё сложнее. Проанализируем старшие степени: если мы вверху раскроем скобки , то получим старшую степень . Внизу у нас такая же старшая степень: . По аналогии с предыдущим примером, очевидно, что при почленном делении числителя и знаменателя на у нас в пределе получится единица. Или, как говорят математики, многочлены и – одного порядка роста . Таким образом, вполне можно обвести отношение простым карандашом и сразу указать, что эта штука стремится к единице. Аналогично расправляемся со второй парой многочленов: и , они тоже одного порядка роста , и их отношение стремится к единице.

На самом деле, такую «халтуру» можно было провернуть и в Примере № 1, но для многочлена 2-й степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-й и более высоких степеней, я использую «турбо»-метод по образцу Примера 2.

Пример 3

Исследовать ряд на сходимость

Рассмотрим типовые примеры с факториалами:

Пример 4

Исследовать ряд на сходимость

В общий член ряда входит и степень, и факториал. Ясно, как день, что здесь надо использовать признак Даламбера. Решаем.


Таким образом, исследуемый ряд расходится .

(1) Составляем отношение . Повторяем еще раз. По условию общий член ряда: . Для того чтобы получить следующий член ряда, вместо нужно подставить , таким образом: .
(2) Избавляемся от четырехэтажности дроби.
(3) Отщипываем семерку от степени. Факториалы расписываем подробно . Как это сделать – см. начало урока или статью о числовых последовательностях .
(4) Сокращаем всё, что можно сократить.
(5) Константу выносим за знак предела. В числителе раскрываем скобки.
(6) Неопределенность устраняем стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.

Пример 5

Исследовать ряд на сходимость

Полное решение и образец оформления в конце урока

Пример 6

Исследовать ряд на сходимость

Иногда встречаются ряды, которые в своей начинке содержат «цепь» множителей, этот тип ряда мы еще не рассматривали. Как исследовать ряд с «цепочкой» множителей? Использовать признак Даламбера. Но сначала для понимания происходящего распишем ряд подробно:

Из разложения мы видим, что у каждого следующего члена ряда добавляется дополнительный множитель в знаменателе, поэтому, если общий член ряда , то следующий член ряда:
. Вот здесь часто автоматом допускают ошибку, формально по алгоритму записывая, что

Примерный образец решения может выглядеть так:

Используем признак Даламбера:

Таким образом, исследуемый ряд сходится.

Радикальный признак Коши

Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел: , то:
а) При ряд сходится . В частности, ряд сходится при .
б) При ряд расходится . В частности, ряд расходится при .
в) При признак не дает ответа . Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн» . Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.

Пример 7

Исследовать ряд на сходимость

Мы видим, что общий член ряда полностью находится под степенью, зависящей от , а значит, нужно использовать радикальный признак Коши:


Таким образом, исследуемый ряд расходится .

(1) Оформляем общий член ряда под корень.
(2) Переписываем то же самое, только уже без корня, используя свойство степеней .
(3) В показателе почленно делим числитель на знаменатель, указывая, что
(4) В результате у нас получилась неопределенность . Здесь можно было пойти длинным путем: возвести в куб, возвести в куб, потом разделить числитель и знаменатель на «эн» в старшей степени. Но в данном случае есть более эффективное решение: можно почленно поделить числитель и знаменатель прямо под степенью-константой. Для устранения неопределенности делим числитель и знаменатель на (старшую степень).
(5) Собственно выполняем почленное деление, и указываем слагаемые, которые стремятся к нулю.
(6) Доводим ответ до ума, помечаем, что и делаем вывод о том, что ряд расходится.

А вот более простой пример для самостоятельного решения:

Пример 8

Исследовать ряд на сходимость

И еще пара типовых примеров.

Полное решение и образец оформления в конце урока

Пример 9

Исследовать ряд на сходимость
Используем радикальный признак Коши:


Таким образом, исследуемый ряд сходится .

(1) Помещаем общий член ряда под корень.
(2) Переписываем то же самое, но уже без корня, при этом раскрываем скобки, используя формулу сокращенного умножения: .
(3) В показателе почленно делим числитель на знаменатель и указываем, что .
(4) Получена неопределенность вида . Здесь можно прямо в скобке почленно поделить числитель на знаменатель на «эн» в старшей степени. Нечто подобное у нас встречалось при изучении второго замечательного предела . Но здесь ситуация другая. Если бы коэффициенты при старших степенях были одинаковыми , например: , то фокус с почленным делением уже бы не прошел, и надо было бы использовать второй замечательный предел. Но у нас эти коэффициенты разные (5 и 6), поэтому можно (и нужно) делить почленно (кстати, наоборот – второй замечательный предел при разных коэффициентах при старших степенях уже не прокатывает). Если помните, эти тонкости рассматривались в последнем параграфе статьи Методы решения пределов .
(5) Собственно выполняем почленное деление и указываем, какие слагаемые у нас стремятся к нулю.
(6) Неопределенность устранена, у нас остался простейший предел: . Почему в бесконечно большой степени стремится к нулю? Потому что основание степени удовлетворяет неравенству . Если у кого есть сомнения в справедливости предела , то я не поленюсь, возьму в руки калькулятор:
Если , то
Если , то
Если , то
Если , то
Если , то
… и т.д. до бесконечности – то есть, в пределе:

Прямо таки бесконечно убывающая геометрическая прогрессия на пальцах =)

(7) Указываем, что и делаем вывод о том, что ряд сходится.

Пример 10

Исследовать ряд на сходимость

Это пример для самостоятельного решения.

Иногда для решения предлагается провокационный пример, например: . Здесь в показателе степени нет «эн» , только константа. Тут нужно возвести в квадрат числитель и знаменатель (получатся многочлены), а далее придерживаться алгоритма из статьи Ряды для чайников . В подобном примере сработать должен либо необходимый признак сходимости ряда либо предельный признак сравнения.

Интегральный признак Коши

Или просто интегральный признак. Разочарую тех, кто плохо усвоил материал первого курса. Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления несобственного интеграла первого рода.

В учебниках по математическому анализу интегральный признак Коши дан математически строго, но слишком уж поморочено, поэтому я сформулирую признак не слишком строго, но понятно:

Рассмотрим положительный числовой ряд . Если существует несобственный интеграл , то ряд сходится или расходится вместе с этим интегралом.

И сразу примеры для пояснения:

Пример 11

Исследовать ряд на сходимость

Почти классика. Натуральный логарифм и какая-нибудь бяка.

Основной предпосылкой использования интегрального признака Коши является тот факт, что в общем члене ряда содержатся множители, похожие на некоторую функцию и её производную. Из темы Производная вы наверняка запомнили простейшую табличную вещь: , и у нас как раз такой каноничный случай.


В этой статье собрана и структурирована информация, необходимая для решения практически любого примера по теме числовые ряды, от нахождения суммы ряда до исследования его на сходимость.

Обзор статьи.

Начнем с определений знакоположительного, знакопеременного ряда и понятия сходимости. Далее рассмотрим стандартные ряды, такие как гармонический ряд, обобщенно гармонический ряд, вспомним формулу для нахождения суммы бесконечно убывающей геометрической прогрессии. После этого перейдем к свойствам сходящихся рядов, остановимся на необходимом условии сходимости ряда и озвучим достаточные признаки сходимости ряда. Теорию будем разбавлять решением характерных примеров с подробными пояснениями.

Навигация по странице.

Основные определения и понятия.

Пусть мы имеем числовую последовательность , где .

Приведем пример числовой последовательности: .

Числовой ряд – это сумма членов числовой последовательности вида .

В качестве примера числового ряда можно привести сумму бесконечно убывающей геометрической прогрессии со знаменателем q = -0.5 : .

Называют общим членом числового ряда или k–ым членом ряда.

Для предыдущего примера общий член числового ряда имеет вид .

Частичная сумма числового ряда – это сумма вида , где n – некоторое натуральное число. называют также n-ой частичной суммой числового ряда.

К примеру, четвертая частичная сумма ряда есть .

Частичные суммы образуют бесконечную последовательность частичных сумм числового ряда.

Для нашего ряда n –ая частичная сумма находится по формуле суммы первых n членов геометрической прогрессии , то есть, будем иметь следующую последовательность частичных сумм: .

Числовой ряд называется сходящимся , если существует конечный предел последовательности частичных сумм . Если предел последовательности частичных сумм числового ряда не существует или бесконечен, то ряд называется расходящимся.

Суммой сходящегося числового ряда называется предел последовательности его частичных сумм, то есть, .

В нашем примере , следовательно, ряд сходится, причем его сумма равна шестнадцати третьим: .

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: . n–ая частичная сумма определяется выражением , а предел частичных сумм бесконечен: .

Еще одним примером расходящегося числового ряда является сумма вида . В этом случае n–ая частичная сумма может быть вычислена как . Предел частичных сумм бесконечен .

Сумма вида называется гармоническим числовым рядом .

Сумма вида , где s – некоторое действительное число, называется обобщенно гармоническим числовым рядом .

Приведенных определений достаточно для обоснования следующих очень часто используемых утверждений, рекомендуем их запомнить.

    ГАРМОНИЧЕСКИЙ РЯД ЯВЛЯЕТСЯ РАСХОДЯЩИМСЯ.

    Докажем расходимость гармонического ряда.

    Предположим, что ряд сходится. Тогда существует конечный предел его частичных сумм. В этом случае можно записать и , что приводит нас к равенству .

    С другой стороны,

    Не вызывают сомнения следующие неравенства . Таким образом, . Полученное неравенство указывает нам на то, что равенство не может быть достигнуто, что противоречит нашему предположению о сходимости гармонического ряда.

    Вывод: гармонический ряд расходится.

    СУММА ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ ВИДА СО ЗНАМЕНАТЕЛЕМ q ЯВЛЯЕТСЯ СХОДЯЩИМСЯ ЧИСЛОВЫМ РЯДОМ, ЕСЛИ , И РАСХОДЯЩИМСЯ РЯДОМ ПРИ .

    Докажем это.

    Мы знаем, что сумма первых n членов геометрической прогрессии находится по формуле .

    При справедливо


    что указывает на сходимость числового ряда.

    При q = 1 имеем числовой ряд . Его частичные суммы находятся как , а предел частичных сумм бесконечен , что указывает на расходимость ряда в этом случае.

    Если q = -1 , то числовой ряд примет вид . Частичные суммы принимают значение для нечетных n , и для четных n . Из этого можно сделать вывод, что предел частичных сумм не существует и ряд расходится.

    При справедливо


    что указывает на расходимость числового ряда.

    ОБОБЩЕННО ГАРМОНИЧЕСКИЙ РЯД СХОДИТСЯ ПРИ s > 1 И РАСХОДИТСЯ ПРИ .

    Доказательство.

    Для s = 1 получим гармонический ряд , а выше мы установили его расходимость.

    При s справедливо неравенство для всех натуральных k . В силу расходимости гармонического ряда можно утверждать, что последовательность его частичных сумм неограниченна (так как не существует конечного предела). Тогда последовательность частичных сумм числового ряда тем более неограниченна (каждый член этого ряда больше соответствующего члена гармонического ряда), следовательно, обобщенно гармонический ряд расходится при s .

    Осталось доказать сходимость ряда при s > 1 .

    Запишем разность :

    Очевидно, что , тогда

    Распишем полученное неравенство для n = 2, 4, 8, 16, …

    Используя эти результаты, с исходным числовым рядом можно провести следующие действия:

    Выражение представляет собой сумму геометрической прогрессии, знаменатель которой равен . Так как мы рассматриваем случай при s > 1 , то . Поэтому
    . Таким образом, последовательность частичных сумм обобщенно гармонического ряда при s > 1 является возрастающей и в тоже время ограниченной сверху значением , следовательно, она имеет предел, что указывает на сходимость ряда . Доказательство завершено.

Числовой ряд называется знакоположительным , если все его члены положительны, то есть, .

Числовой ряд называется знакочередующимся , если знаки его соседних членов различны. Знакочередующийся числовой ряд можно записать в виде или , где .

Числовой ряд называется знакопеременным , если он содержит бесконечное множество как положительных, так и отрицательных членов.

Знакочередующийся числовой ряд является частным случаем знакопеременного ряда.

Ряды

являются знакоположительным, знакочередующимся и знакопеременным соответственно.

Для знакопеременного ряда существует понятие абсолютной и условной сходимости.

абсолютно сходящимся , если сходится ряд из абсолютных величин его членов, то есть, сходится знакоположительный числовой ряд .

К примеру, числовые ряды и абсолютно сходятся, так как сходится ряд , являющийся суммой бесконечно убывающей геометрической прогрессии.

Знакопеременный ряд называется условно сходящимся , если ряд расходится, а ряд сходится.

В качестве примера условно сходящегося числового ряда можно привести ряд . Числовой ряд , составленный из абсолютных величин членов исходного ряда, расходящийся, так как является гармоническим. В то же время, исходный ряд является сходящимся, что легко устанавливается с помощью . Таким образом, числовой знакочередующийся ряд условно сходящийся.

Свойства сходящихся числовых рядов.

Пример.

Докажите сходимость числового ряда .

Решение.

Запишем ряд в другом виде . Числовой ряд сходится, так как обобщенно гармонический ряд является сходящимся при s > 1 , а в силу второго свойства сходящихся числовых рядов будет сходится и ряд с числовым коэффициентом .

Пример.

Сходится ли числовой ряд .

Решение.

Преобразуем исходный ряд: . Таким образом, мы получили сумму двух числовых рядов и , причем каждый из них сходится (смотрите предыдущий пример). Следовательно, в силу третьего свойства сходящихся числовых рядов, сходится и исходный ряд.

Пример.

Докажите сходимость числового ряда и вычислите его сумму.

Решение.

Данный числовой ряд можно представить в виде разности двух рядов:

Каждый из этих рядов представляет собой сумму бесконечно убывающей геометрической прогрессии, следовательно, является сходящимся. Третье свойство сходящихся рядов позволяет утверждать, что исходный числовой ряд сходится. Вычислим его сумму.

Первый член ряда есть единица, а знаменатель соответствующей геометрической прогрессии равен 0.5 , следовательно, .

Первым членом ряда является 3 , а знаменатель соответствующей бесконечно убывающей геометрической прогрессии равен 1/3 , поэтому .

Воспользуемся полученными результатами для нахождения суммы исходного числового ряда:

Необходимое условие сходимости ряда.

Если числовой ряд сходится, то предел его k-ого члена равен нулю: .

При исследовании любого числового ряда на сходимость в первую очередь следует проверять выполнение необходимого условия сходимости. Невыполнение этого условия указывает на расходимость числового ряда, то есть, если , то ряд расходится.

С другой стороны нужно понимать, что это условие не является достаточным. То есть, выполнение равенства не говорит о сходимости числового ряда . К примеру, для гармонического ряда необходимое условие сходимости выполняется , а ряд расходится.

Пример.

Исследовать числовой ряд на сходимость.

Решение.

Проверим необходимое условие сходимости числового ряда:

Предел n-ого члена числового ряда не равен нулю, следовательно, ряд расходится.

Достаточные признаки сходимости знакоположительного ряда.

При использовании достаточных признаков для исследования числовых рядов на сходимость постоянно приходится сталкиваться с , так что рекомендуем обращаться к этому разделу при затруднениях.

Необходимое и достаточное условие сходимости знакоположительного числового ряда.

Для сходимости знакоположительного числового ряда необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена.

Начнем с признаков сравнения рядов. Их суть заключается в сравнении исследуемого числового ряда с рядом, сходимость или расходимость которого известна.

Первый, второй и третий признаки сравнения.

Первый признак сравнения рядов.

Пусть и - два знакоположительных числовых ряда и выполняется неравенство для всех k = 1, 2, 3, ... Тогда из сходимости ряда следует сходимость , а из расходимости ряда следует расходимость .

Первый признак сравнения используется очень часто и представляет собой очень мощный инструмент исследования числовых рядов на сходимость. Основную проблему представляет подбор подходящего ряда для сравнения. Ряд для сравнения обычно (но не всегда) выбирается так, что показатель степени его k-ого члена равен разности показателей степени числителя и знаменателя k-ого члена исследуемого числового ряда. К примеру, пусть , разность показателей степени числителя и знаменателя равна 2 – 3 = -1 , поэтому, для сравнения выбираем ряд с k-ым членом , то есть, гармонический ряд. Рассмотрим несколько примеров.

Пример.

Установить сходимость или расходимость ряда .

Решение.

Так как предел общего члена ряда равен нулю , то необходимое условие сходимости ряда выполнено.

Несложно заметить, что справедливо неравенство для всех натуральных k . Мы знаем, что гармонический ряд расходится, следовательно, по первому признаку сравнения исходный ряд также является расходящимся.

Пример.

Исследуйте числовой ряд на сходимость.

Решение.

Необходимое условие сходимости числового ряда выполняется, так как . Очевидно выполнение неравенства для любого натурального значения k . Ряд сходится, так как обобщенно гармонический ряд является сходящимся для s > 1 . Таким образом, первый признак сравнения рядов позволяет констатировать сходимость исходного числового ряда.

Пример.

Определите сходимость или расходимость числового ряда .

Решение.

, следовательно, необходимое условие сходимости числового ряда выполнено. Какой ряд выбрать для сравнения? Напрашивается числовой ряд , а чтобы определиться с s , внимательно исследуем числовую последовательность . Члены числовой последовательности возрастают к бесконечности. Таким образом, начиная с некоторого номера N (а именно, с N = 1619 ), члены этой последовательности будут больше 2 . Начиная с этого номера N , справедливо неравенство . Числовой ряд сходится в силу первого свойства сходящихся рядов, так как получается из сходящегося ряда отбрасыванием первых N – 1 члена. Таким образом, по первому признаку сравнения сходящимся является ряд , а в силу первого свойства сходящихся числовых рядов сходится будет и ряд .

Второй признак сравнения.

Пусть и - знакоположительные числовые ряды. Если , то из сходимости ряда следует сходимость . Если , то из расходимости числового ряда следует расходимость .

Следствие.

Если и , то из сходимости одного ряда следует сходимость другого, а из расходимости следует расходимость.

Исследуем ряд на сходимость с помощью второго признака сравнения. В качестве ряда возьмем сходящийся ряд . Найдем предел отношения k-ых членов числовых рядов:

Таким образом, по второму признаку сравнения из сходимости числового ряда следует сходимость исходного ряда.

Пример.

Исследовать на сходимость числовой ряд .

Решение.

Проверим необходимое условие сходимости ряда . Условие выполнено. Для применения второго признака сравнения возьмем гармонический ряд . Найдем предел отношения k-ых членов:

Следовательно, из расходимости гармонического ряда следует расходимость исходного ряда по второму признаку сравнения.

Для информации приведем третий признак сравнения рядов.

Третий признак сравнения.

Пусть и - знакоположительные числовые ряды. Если с некоторого номера N выполняется условие , то из сходимости ряда следует сходимость , а из расходимости ряда следует расходимость .

Признак Даламбера.

Замечание.

Признак Даламбера справедлив, если предел бесконечен, то есть, если , то ряд сходится, если , то ряд расходится.

Если , то признак Даламбера не дает информацию о сходимости или расходимости ряда и требуется дополнительное исследование.

Пример.

Исследуйте числовой ряд на сходимость по признаку Даламбера.

Решение.

Проверим выполнение необходимого условия сходимости числового ряда, предел вычислим по :

Условие выполнено.

Воспользуемся признаком Даламбера:

Таким образом, ряд сходится.

Радикальный признак Коши.

Пусть - знакоположительный числовой ряд. Если , то числовой ряд сходится, если , то ряд расходится.

Замечание.

Радикальный признак Коши справедлив, если предел бесконечен, то есть, если , то ряд сходится, если , то ряд расходится.

Если , то радикальный признак Коши не дает информацию о сходимости или расходимости ряда и требуется дополнительное исследование.

Обычно достаточно легко разглядеть случаи, когда лучше всего использовать радикальный признак Коши. Характерным является случай, когда общий член числового ряда представляет собой показательно степенное выражение. Рассмотрим несколько примеров.

Пример.

Исследовать знакоположительный числовой ряд на сходимость с помощью радикального признака Коши.

Решение.

. По радикальному признаку Коши получаем .

Следовательно, ряд сходится.

Пример.

Сходится ли числовой ряд .

Решение.

Воспользуемся радикальным признаком Коши , следовательно, числовой ряд сходится.

Интегральный признак Коши.

Пусть - знакоположительный числовой ряд. Составим функцию непрерывного аргумента y = f(x) , аналогичную функции . Пусть функция y = f(x) положительная, непрерывная и убывающая на интервале , где ). Тогда в случае сходимости несобственного интеграла сходится исследуемый числовой ряд. Если же несобственный интеграл расходится, то исходный ряд тоже расходится.

При проверке убывания функции y = f(x) на интервале Вам может пригодится теория из раздела .

Пример.

Исследуйте числовой ряд с положительными членами на сходимость.

Решение.

Необходимое условие сходимости ряда выполнено, так как . Рассмотрим функцию . Она положительная, непрерывная и убывающая на интервале . Непрерывность и положительность этой функции не вызывает сомнения, а на убывании остановимся чуть подробнее. Найдем производную:
. Она отрицательная на промежутке , следовательно, функция убывает на этом интервале.

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос:
Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения . Предельный признак сравнения применяется тогда, когда в общем члене ряда:
1) В знаменателе находится многочлен.
2) Многочлены находятся и в числителе и в знаменателе.
3) Один или оба многочлена могут быть под корнем.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. Что такое факториал? Ничего сложного, факториал – это просто свёрнутая запись произведения:








! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера : Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то:
а) При ряд сходится
б) При ряд расходится
в) При признак не дает ответа . Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.

У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к теме Пределы. Примеры решений . Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться. А сейчас долгожданные примеры.

Пример 1
Мы видим, что в общем члене ряда у нас есть , а это верная предпосылка того, что нужно использовать признак Даламбера. Сначала полное решение и образец оформления, комментарии ниже.

Используем признак Даламбера:


сходится.

(1) Составляем отношение следующего члена ряда к предыдущему: . Из условия мы видим, что общий член ряда . Для того, чтобы получить следующий член ряда необходимо вместо подставить : .
(2) Избавляемся от четырехэтажности дроби. При определенном опыте решения этот шаг можно пропускать.
(3) В числителе раскрываем скобки. В знаменателе выносим четверку из степени.
(4) Сокращаем на . Константу выносим за знак предела. В числителе в скобках приводим подобные слагаемые.
(5) Неопределенность устраняется стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.
(6) Почленно делим числители на знаменатели, и указываем слагаемые, которые стремятся к нулю.
(7) Упрощаем ответ и делаем пометку, что с выводом о том, что, по признаку Даламбера исследуемый ряд сходится.

В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-ой степени. Что делать, если там многочлен 3-ей, 4-ой или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения.

Пример 2 Возьмём похожий ряд и исследуем его на сходимость
Сначала полное решение, потом комментарии:

Используем признак Даламбера:


Таким образом, исследуемый ряд сходится .

(1) Составляем отношение .
(2) Избавляемся от четырёхэтажности дроби.
(3) Рассмотрим выражение в числителе и выражение в знаменателе. Мы видим, что в числителе нужно раскрывать скобки и возводить в четвертую степень: , чего делать совершенно не хочется. Кроме того, для тех, кто не знаком с биномом Ньютона, данная задача вообще может оказаться невыполнимой. Проанализируем старшие степени: если мы вверху раскроем скобки , то получим старшую степень . Внизу у нас такая же старшая степень: . По аналогии с предыдущим примером, очевидно, что при почленном делении числителя и знаменателя на у нас в пределе получится единица. Или, как говорят математики, многочлены и – одного порядка роста . Таким образом, вполне можно обвести отношение простым карандашом и сразу указать, что эта штука стремится к единице. Аналогично расправляемся со второй парой многочленов: и , они тоже одного порядка роста , и их отношение стремится к единице.

На самом деле, такую «халтуру» можно было провернуть и в Примере №1, но для многочлена 2-ой степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-ей и более высоких степеней, я использую «турбо»-метод по образцу Примера 2.

Пример 3 .

Рассмотрим типовые примеры с факториалами:

Пример 4 Исследовать ряд на сходимость

В общий член ряда входит и степень, и факториал. Ясно, как день, что здесь надо использовать признак Даламбера. Решаем.


Таким образом, исследуемый ряд расходится .

(1) Составляем отношение . Повторяем еще раз. По условию общий член ряда: . Для того чтобы получить следующий член ряда, вместо нужно подставить , таким образом: .
(2) Избавляемся от четырехэтажности дроби.
(3) Отщипываем семерку от степени. Факториалы расписываем подробно . Как это сделать – см. начало урока.
(4) Сокращаем всё, что можно сократить.
(5) Константу выносим за знак предела. В числителе раскрываем скобки.
(6) Неопределенность устраняем стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.

Пример 5 Исследовать ряд на сходимость Полное решение ниже.

Пример 6 Исследовать ряд на сходимость

Иногда встречаются ряды, которые в своей начинке содержат «цепь» множителей, этот тип ряда мы еще не рассматривали. Как исследовать ряд с «цепочкой» множителей? Использовать признак Даламбера. Но сначала для понимания происходящего распишем ряд подробно:

Из разложения мы видим, что у каждого следующего члена ряда добавляется дополнительный множитель в знаменателе, поэтому, если общий член ряда , то следующий член ряда:
. Вот здесь часто автоматом допускают ошибку, формально по алгоритму записывая, что

Примерный образец решения может выглядеть так: Используем признак Даламбера:
Таким образом, исследуемый ряд сходится.
РАДИКАЛЬНЫЙ ПРИЗНАК КОШИ

Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел: , то:
а) При ряд сходится . В частности, ряд сходится при .
б) При ряд расходится . В частности, ряд расходится при .
в) При признак не дает ответа . Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера нам тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн» . Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.

Пример 7 Исследовать ряд на сходимость

Мы видим, что общий член ряда полностью находится под степенью, зависящей от , а значит, нужно использовать радикальный признак Коши:


Таким образом, исследуемый ряд расходится .

(1) Оформляем общий член ряда под корень.
(2) Переписываем то же самое, только уже без корня, используя свойство степеней .
(3) В показателе почленно делим числитель на знаменатель, указывая, что
(4) В результате у нас получилась неопределенность . Здесь можно было пойти длинным путем: возвести в куб, возвести в куб, потом разделить числитель и знаменатель на «эн» в старшей степени. Но в данном случае есть более эффективное решение: можно почленно поделить числитель и знаменатель прямо под степенью-константой. Для устранения неопределенности делим числитель и знаменатель на (старшую степень).
(5) Собственно выполняем почленное деление, и указываем слагаемые, которые стремятся к нулю.
(6) Доводим ответ до ума, помечаем, что и делаем вывод о том, что ряд расходится.

А вот более простой пример для самостоятельного решения:

Пример 8 Исследовать ряд на сходимость

И еще пара типовых примеров.

Полное решение и образец оформления ниже.

Пример 9 Исследовать ряд на сходимость
Используем радикальный признак Коши:


Таким образом, исследуемый ряд сходится .

(1) Помещаем общий член ряда под корень.
(2) Переписываем то же самое, но уже без корня, при этом раскрываем скобки, используя формулу сокращенного умножения: .
(3) В показателе почленно делим числитель на знаменатель и указываем, что .
(4) Получена неопределенность вида . Здесь можно прямо в скобке почленно поделить числитель на знаменатель на «эн» в старшей степени. Нечто подобное у нас встречалось при изучении второго замечательного предела . Но здесь ситуация другая. Если бы коэффициенты при старших степенях были одинаковыми , например: , то фокус с почленным делением уже бы не прошел, и надо было бы использовать второй замечательный предел. Но у нас эти коэффициенты разные (5 и 6), поэтому можно (и нужно) делить почленно (кстати, наоборот – второй замечательный предел при разных коэффициентах при старших степенях уже не прокатывает).
(5) Собственно выполняем почленное деление и указываем, какие слагаемые у нас стремятся к нулю.
(6) Неопределенность устранена, остался простейший предел: .Почему в бесконечно большой степени стремится к нулю? Потому что основание степени удовлетворяет неравенству . Если у кого есть сомнения в справедливости предела , то я не поленюсь, возьму в руки калькулятор:
Если , то
Если , то
Если , то
Если , то
Если , то
… и т.д. до бесконечности – то есть, в пределе:
(7) Указываем, что и делаем вывод о том, что ряд сходится.

Пример 10 Исследовать ряд на сходимость

Это пример для самостоятельного решения.

Иногда для решения предлагается провокационный пример, например: . Здесь в показателе степени нет «эн» , только константа. Тут нужно возвести в квадрат числитель и знаменатель (получатся многочлены), а далее придерживаться алгоритма из статьи Ряды для чайников . В подобном примере сработать должен либо необходимый признак сходимости ряда либо предельный признак сравнения.
ИНТЕГРАЛЬНЫЙ ПРИЗНАК КОШИ

Разочарую тех, кто плохо усвоил материал первого курса. Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления несобственного интеграла первого рода. В учебниках по математическому анализу интегральный признак Коши дан математически строго, сформулируем признак совсем примитивно, но понятно. И сразу примеры для пояснения.

Интегральный признак Коши: Рассмотрим положительный числовой ряд . Данный ряд сходится или расходится

Пример 11 Исследовать ряд на сходимость

Почти классика. Натуральный логарифм и какая-нибудь бяка.

Основной предпосылкой использования интегрального признака Коши является тот факт, что в общем члене ряда есть некоторая функция и её производная. Из темы Производная вы наверняка запомнили простейшую табличную вещь: , и у нас как раз такой канонический случай.

Как использовать интегральный признак? Сначала берем значок интеграла и переписываем со «счётчика» ряда верхний и нижний пределы: . Затем под интегралом переписываем «начинку» ряда с буковкой «хэ»: . Чего-то не хватает…, ах, да, еще в числителе нужно прилепить значок дифференциала: .

Теперь нужно вычислить несобственный интеграл . При этом возможно два случая:

1) Если выяснится, что интеграл сходится, то будет сходиться и наш ряд .

2) Если выяснится, что интеграл расходится, то наш ряд тоже будет расходиться.

Повторюсь, если материал запущен, то чтение параграфа будет трудным и малопонятным, поскольку применение признака по сути дела сводится к вычислениюнесобственного интеграла первого рода.

Полное решение и оформление примера должно выглядеть примерно так:

Используем интегральный признак:

Таким образом, исследуемый ряд расходится вместе с соответствующим несобственным интегралом.

Пример 12 Исследовать ряд на сходимость

Решение и образец оформления в конце урока

В рассмотренных примерах логарифм также мог находиться под корнем, это не изменило бы способа решения.

И еще два примера на закуску

Пример 13 Исследовать ряд на сходимость

По общим «параметрам» общий член ряда вроде бы подходит для использования предельного признака сравнения. Нужно всего лишь раскрыть скобки и сразу сдать на кандидата предельно сравнить данный ряд со сходящимся рядом . Впрочем, я немного слукавил, скобки можно и не раскрывать, но всё равно решение через предельный признак сравнения будет выглядеть довольно вычурно.

Поэтому мы используем интегральный признак Коши:

Подынтегральная функция непрерывна на


сходится вместе с соответствующим несобственным интегралом.

! Примечание: полученное число – не является суммой ряда!!!

Пример 14 Исследовать ряд на сходимость

Решение и образец оформления в конце раздела, который подходит к концу.

В целях окончательного и бесповоротного усвоения темы числовых рядов посетите темы .

Решения и ответы:

Пример 3: Используем признак Даламбера:

Таким образом, исследуемый ряд расходится .
Примечание: Можно было использовать и «турбо»-метод решения: сразу обвести карандашом отношение , указать, что оно стремится к единице и сделать пометку: «одного порядка роста».

Пример 5: Используем признак Даламбера: Т.о., исследуемый ряд сходится .

Пример 8:

Таким образом, исследуемый ряд сходится .

Пример 10:
Используем радикальный признак Коши.


Таким образом, исследуемый ряд расходится .
Примечание: Здесь основание степени , поэтому

Пример 12 : Используем интегральный признак.



Получено конечное число, значит, исследуемый ряд сходится

Пример 14 : Используем интегральный признак
Подынтегральная функция непрерывна на .


Таким образом, исследуемый ряд расходится вместе с соответствующим несобственным интегралом.
Примечание: Ряд также можно исследовать с помощью предельного признака сравнения . Для этого необходимо раскрыть скобки под корнем и сравнить исследуемый ряд с расходящимся рядом .

Знакочередующиеся ряды. Признак Лейбница. Примеры решений

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.
Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус». На математическом жаргоне эта штуковина называется «мигалкой». Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится. Или в два пункта:

2) Члены ряда убывают по модулю: . Причём, убывают монотонно.

Если выполнены оба условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначает одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю: Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). При этом члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим. Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1 Исследовать ряд на сходимость

В общий член ряда входит множитель , а значит, нужно использовать признак Лейбница

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Необходимо решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю. К слову, отпала надобность в рассуждениях о монотонности убывания. Вывод: ряд расходится.

Как разобраться, чему равно ? Очень просто. Как известно, модуль уничтожает минусы, поэтому для того, чтобы составить , нужно просто убрать с крыши проблесковый маячок. В данном случае общий член ряда . Тупо убираем «мигалку»: .

Пример 2 Исследовать ряд на сходимость

Используем признак Лейбница:

1) Ряд является знакочередующимся.

2) – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий: , таким образом, убывание монотонно.

Вывод: ряд сходится.

Всё бы было очень просто – но это еще не конец решения!

Если ряд сходится по признаку Лейбница, то также говорят, что ряд сходится условно .

Если сходится и ряд, составленный из модулей: , то говорят, что ряд сходится абсолютно .

Поэтому на повестке дня второй этапрешения типового задания – исследование знакочередующегося ряда на абсолютную сходимость.

Не виноватый я – такая уж теория числовых рядов =)

Исследуем наш ряд на абсолютную сходимость.
Составим ряд из модулей – опять просто убираем множитель, который обеспечивает знакочередование: – расходится (гармонический ряд).

Таким образом, наш ряд не является абсолютно сходящимся .
Исследуемый ряд сходится только условно .

Заметьте, что в Примере №1 не нужно проводить исследование не абсолютную сходимость, поскольку еще на первом шаге сделан вывод о том, что ряд расходится.

Собираем ведёрки, лопатки, машинки и выходим из песочницы, чтобы смотреть на мир широко открытыми глазами из кабины моего экскаватора:

Пример 3 Исследовать ряд на сходимость Используем признак Лейбница:

1)
Данный ряд является знакочередующимся.

2) – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий: , значит, убывание монотонно. Вывод: Ряд сходится.

Анализируя начинку ряда, приходим к выводу, что здесь нужно использовать предельный признак сравнения. Скобки в знаменателе удобнее раскрыть:

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения.

Получено конечное число, отличное от нуля, значит, ряд сходится вместе с рядом . Исследуемый ряд сходится абсолютно .

Пример 4 Исследовать ряд на сходимость

Пример 5 Исследовать ряд на сходимость

Это примеры для самостоятельного решения. Полное решение и образец оформления в конце раздела.

Как видите, знакочередующиеся ряды – это просто и занудно! Но не спешите закрывать страницу, всего через пару экранов мы рассмотрим случай, который многих ставит в тупик. А пока еще пара примеров для тренировки и повторения.

Пример 6 Исследовать ряд на сходимость

Используем признак Лейбница.
1) Ряд является знакочередующимся.
2)

Члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий, значит, убывание монотонно. Вывод: ряд сходится.

Обратите внимание, что я не расписал подробно члены ряда. Их всегда желательно расписывать, но от непреодолимой лени в «тяжелых» случаях можно ограничиться фразой «Ряд является знакочередующимся». Кстати, не нужно относиться к этому пункту формально, всегда проверяем (хотя бы мысленно) что ряд действительно знакочередуется. Беглый взгляд подводит, и ошибка допускается «на автомате». Помните об «обманках» , , , если они есть, то от них нужно избавиться, получив «обычный» ряд с положительными членами.

Вторая тонкость касается фразы про монотонность, её я тоже максимально сократил. Так делать можно, и почти всегда вашу задачу зачтут. Скажу совсем нехорошую вещь – лично я часто вообще умалчиваю о монотонности, и такой номер проходит. Но будьте готовы всё расписать детально, вплоть до подробных цепочек неравенств (см. пример в начале урока). Кроме того, иногда монотонность бывает нестрогой, и за этим тоже нужно следить, чтобы заменить слово «меньше» на слово «не больше».

Исследуем ряд на абсолютную сходимость:

Очевидно, что нужно использовать радикальный признак Коши:

Таким образом, ряд сходится. Исследуемый ряд сходится абсолютно .

Пример 7 Исследовать ряд на сходимость

Это пример для самостоятельного решения Нередко встречаются знакочередующиеся ряды, которые вызывают затруднения.

Пример 8 Исследовать ряд на сходимость

Используем признак Лейбница:
1) Ряд является знакочередующимся.