Plan časa iz fizike o elektromagnetnim talasima (11. razred) na tu temu.  Metodička izrada časa: Elektromagnetski talasi Napomene o fizici elektromagnetski talasi

Plan časa iz fizike o elektromagnetnim talasima (11. razred) na tu temu. Metodička izrada časa: Elektromagnetski talasi Napomene o fizici elektromagnetski talasi

"Elektromagnetski talasi".

Ciljevi lekcije:

edukativni:

  • upoznati učenike sa karakteristikama širenja elektromagnetnih talasa;
  • razmotriti faze stvaranja teorije elektromagnetnog polja i eksperimentalne potvrde ove teorije;

edukativni: upoznati učenike sa zanimljivim epizodama iz biografije G. Hertza, M. Faradaya, Maxwella D.K., Oersted H.K., A.S. Popova;

razvojni: promovirati razvoj interesovanja za predmet.

Demonstracije : slajdovi, video.

TOKOM NASTAVE

Danas ćemo se upoznati sa karakteristikama širenja elektromagnetskih valova, uočiti faze stvaranja teorije elektromagnetskog polja i eksperimentalne potvrde ove teorije, te se zadržati na nekim biografskim podacima.

Ponavljanje.

Da bismo postigli ciljeve lekcije, moramo ponoviti neka pitanja:

Šta je talas, posebno mehanički talas? (Širenje vibracija čestica materije u prostoru)

Koje količine karakterišu talas? (talasna dužina, brzina talasa, period oscilovanja i frekvencija oscilovanja)

Kakav je matematički odnos između talasne dužine i perioda oscilovanja? (talasna dužina je jednaka proizvodu brzine talasa i perioda oscilovanja)

Učenje novog gradiva.

Elektromagnetski talas je na mnogo načina sličan mehaničkom talasu, ali postoje i razlike. Glavna razlika je u tome što ovaj val ne zahtijeva medij za širenje. Elektromagnetski talas je rezultat širenja naizmeničnog električnog i naizmeničnog magnetnog polja u prostoru, tj. elektromagnetno polje.

Elektromagnetno polje stvaraju ubrzano kretanje nabijenih čestica. Njegovo prisustvo je relativno. Ovo je posebna vrsta materije, koja je kombinacija varijabilnih električnih i magnetskih polja.

Elektromagnetski talas je širenje elektromagnetnog polja u svemiru.

Razmotrimo graf širenja elektromagnetnog talasa.

Dijagram širenja elektromagnetnog talasa prikazan je na slici. Neophodno je zapamtiti da su vektori jačine električnog polja, magnetne indukcije i brzine širenja talasa međusobno okomiti.

Faze stvaranja teorije elektromagnetnog talasa i njena praktična potvrda.

Hans Christian Oersted (1820.) danski fizičar, stalni sekretar Kraljevskog danskog društva (od 1815.).

Od 1806. - profesor na ovom univerzitetu, od 1829. ujedno i direktor Politehničke škole u Kopenhagenu. Oerstedova djela posvećena su elektricitetu, akustici i molekularnoj fizici.

Godine 1820. otkrio je djelovanje električne struje na magnetsku iglu, što je dovelo do pojave novog polja fizike - elektromagnetizma. Ideja o odnosu između različitih prirodnih pojava karakteristična je za Oerstedovo naučno stvaralaštvo; posebno je bio jedan od prvih koji je izrazio ideju da je svjetlost elektromagnetna pojava. 1822-1823, nezavisno od J. Fouriera, ponovo je otkrio termoelektrični efekat i izgradio prvi termoelement. Eksperimentalno je proučavao kompresibilnost i elastičnost tekućina i plinova i izumio pijezometar (1822). Sprovedeno istraživanje o akustici, posebno pokušano otkriti pojavu električnih pojava zbog zvuka. Istražena odstupanja od Boyle-Mariotteovog zakona.

Ørsted je bio sjajan predavač i popularizator, organizovao je Društvo za širenje prirodnih nauka 1824. godine, stvorio prvu fizičku laboratoriju u Danskoj i doprinio poboljšanju nastave fizike u obrazovnim institucijama u zemlji.

Oersted je počasni član mnogih akademija nauka, posebno Sankt Peterburgske akademije nauka (1830).

Michael Faraday (1831.)

Briljantni naučnik Michael Faraday bio je samouk. U školi sam stekao samo osnovno obrazovanje, a onda sam, zbog životnih problema, radio i uporedo učio naučnopopularnu literaturu iz fizike i hemije. Kasnije je Faraday postao laboratorijski asistent tada poznatog hemičara, a zatim je nadmašio svog učitelja i učinio mnogo važnih stvari za razvoj takvih nauka kao što su fizika i hemija. Godine 1821. Michael Faraday je saznao za Oerstedovo otkriće da električno polje stvara magnetno polje. Nakon što je razmišljao o ovom fenomenu, Faraday je krenuo da stvori električno polje iz magnetnog polja i nosio je magnet u džepu kao stalni podsjetnik. Deset godina kasnije, svoj moto je sproveo u delo. Magnetizam pretvorio u elektricitet: stvara magnetsko polje - električnu struju

Teoretičar je izveo jednačine koje nose njegovo ime. Ove jednačine govore da naizmjenična magnetska i električna polja stvaraju jedno drugo. Iz ovih jednačina slijedi da naizmjenično magnetsko polje stvara vrtložno električno polje, koje stvara naizmjenično magnetno polje. Osim toga, u njegovim jednačinama postojala je konstantna vrijednost - ovo je brzina svjetlosti u vakuumu. One. iz ove teorije je sledilo da se elektromagnetski talas širi u svemiru brzinom svetlosti u vakuumu. Zaista briljantan rad cijenili su mnogi naučnici tog vremena, a A. Ajnštajn je rekao da je najfascinantnija stvar tokom njegovih studija bila Maksvelova teorija.

Heinrich Hertz (1887)

Hajnrih Herc je rođen kao bolešljivo dete, ali je postao veoma pametan učenik. Svidjeli su mu se svi predmeti koje je učio. Budući naučnik volio je pisati poeziju i raditi na strugu. Nakon što je završio srednju školu, Hertz je upisao višu tehničku školu, ali nije želio da bude uski specijalista i ušao je na Univerzitet u Berlinu da postane naučnik. Nakon upisa na univerzitet, Heinrich Hertz je nastojao studirati u laboratoriju za fiziku, ali za to je bilo potrebno riješiti konkurentske probleme. I krenuo je u rješavanje sljedećeg problema: da li električna struja ima kinetičku energiju? Ovaj rad je zamišljen da traje 9 mjeseci, ali ga je budući naučnik riješio za tri mjeseca. Istina, negativan rezultat je netačan sa moderne tačke gledišta. Tačnost mjerenja je morala biti povećana hiljadama puta, što u to vrijeme nije bilo moguće.

Još kao student Hertz je odbranio doktorsku disertaciju sa odličnim ocjenama i dobio zvanje doktora. Imao je 22 godine. Naučnik se uspješno bavio teorijskim istraživanjima. Proučavajući Maxwellovu teoriju, pokazao je visoke eksperimentalne vještine, stvorio uređaj koji se danas zove antena i uz pomoć odašiljačkih i prijemnih antena stvarao i primao elektromagnetne valove i proučavao sva svojstva ovih valova. Shvatio je da je brzina prostiranja ovih talasa konačna i jednaka brzini svetlosti u vakuumu. Nakon proučavanja svojstava elektromagnetnih valova, dokazao je da su oni slični svojstvima svjetlosti. Nažalost, ovaj robot je potpuno potkopao zdravlje naučnika. Prvo su mi otkazale oči, a onda su me počele boljeti uši, zubi i nos. Umro je ubrzo nakon toga.

Heinrich Hertz je završio ogroman posao koji je započeo Faraday. Maxwell je transformirao Faradayeve ideje u matematičke formule, a Hertz je transformirao matematičke slike u vidljive i čujne elektromagnetne valove. Slušajući radio, gledajući televizijske programe, moramo zapamtiti ovu osobu. Nije slučajno što je jedinica frekvencije oscilovanja nazvana po Hercu, a nije nimalo slučajno da su prve riječi koje je prenio ruski fizičar A.S. Popov koristeći bežičnu komunikaciju bili su "Hajnrih Herc", šifrovani Morzeovom azbukom.

Popov Aleksandar Sergejevič (1895)

Popov je poboljšao prijemnu i predajnu antenu i najprije je komunikacija obavljena na udaljenosti od 250 m, zatim na 600 m, a 1899. godine naučnik je uspostavio radio komunikaciju na udaljenosti od 20 km, a 1901. - na 150 km. Godine 1900. radio komunikacije su pomogle u izvođenju spasilačkih operacija u Finskom zaljevu. Godine 1901. talijanski inženjer G. Markoni izveo je radio komunikaciju preko Atlantskog okeana.

Pogledajmo video snimak koji govori o nekim svojstvima elektromagnetnog talasa. Nakon pregleda odgovaraćemo na pitanja.

Zašto sijalica u prijemnoj anteni menja svoj intenzitet kada se ubaci metalna šipka?

Zašto se to ne dešava kada se metalna šipka zamijeni staklenom?

Konsolidacija.

Odgovori na pitanja:

Šta je elektromagnetski talas?

Ko je stvorio teoriju elektromagnetnih talasa?

Ko je proučavao svojstva elektromagnetnih talasa?

Popunite tabelu odgovora u svojoj bilježnici, označavajući broj pitanja.

Kako talasna dužina zavisi od frekvencije vibracije?

(Odgovor: obrnuto proporcionalno)

Šta će se dogoditi sa talasnom dužinom ako se period oscilovanja čestice udvostruči?

(Odgovor: Povećaće se za 2 puta)

Kako će se promijeniti frekvencija oscilacije zračenja kada val pređe u gušći medij?

(Odgovor: Neće se promijeniti)

Šta uzrokuje emisiju elektromagnetnih valova?

(Odgovor: Nabijene čestice se kreću ubrzano)

Gdje se koriste elektromagnetski valovi?

(Odgovor: mobilni telefon, mikrovalna pećnica, televizija, radio, itd.)

(odgovori na pitanja)

Zadaća.

Potrebno je pripremiti izvještaje o različitim vrstama elektromagnetnog zračenja, navodeći njihove karakteristike i govoriti o njihovoj primjeni u ljudskom životu. Poruka mora biti duga pet minuta.

  1. Vrste elektromagnetnih talasa:
  2. Zvučni frekvencijski talasi
  3. Radio talasi
  4. Mikrotalasno zračenje
  5. Infracrveno zračenje
  6. Vidljivo svjetlo
  7. Ultraljubičasto zračenje
  8. rendgensko zračenje
  9. Gama zračenje

Rezimirajući.

Književnost.

  1. Kasyanov V.A. Fizika 11. razred. - M.: Drfa, 2007
  2. Rymkevich A.P. Zbirka zadataka iz fizike. - M.: Prosvjeta, 2004.
  3. Maron A.E., Maron E.A. Fizika 11. razred. Didaktički materijali. - M.: Drfa, 2004.
  4. Tomilin A.N. Svijet električne energije. - M.: Drfa, 2004.
  5. Enciklopedija za djecu. fizika. - M.: Avanta+, 2002.
  6. Yu. A. Khramov Physics. Biografski priručnik, - M., 1983

Scenario za izvođenje nastave uz korištenje savremenih pedagoških tehnologija.

Tema lekcije

"Elektromagnetni talasi"

Ciljevi lekcije:

    Obrazovni : Proučavanje elektromagnetnih talasa, istorijat njihovog otkrića, karakteristike i svojstva.

    Razvojni : razvijati sposobnost posmatranja, poređenja, analize

    Obrazovanje : formiranje naučnog i praktičnog interesovanja i pogleda na svijet

Plan lekcije:

    Ponavljanje

    Uvod u istoriju otkrića elektromagnetnih talasa:

    1. Faradejev zakon (eksperiment)

      Maxwellova hipoteza (eksperiment)

  1. Grafički i matematički prikaz elektromagnetnog talasa

    1. Grafikon elektromagnetnih talasa

      Jednačine elektromagnetnih talasa

      Karakteristike elektromagnetnog talasa: brzina širenja, frekvencija, period, amplituda

    Eksperimentalna potvrda postojanja elektromagnetnih talasa.

    1. Zatvoreni oscilatorni krug

      Otvoreni oscilatorni krug. Hertzovi eksperimenti

    Osobine elektromagnetnih talasa

    Ažuriranje znanja

    Dobivanje domaćeg

Oprema:

    Računar

    interaktivna tabla

    Projektor

    Induktor

    Galvanometar

    Magnet

    Hardversko-softverski digitalni mjerni komplekslaboratorijska oprema "Naučna zabava"

    Lične gotove kartice sa grafičkim prikazom elektromagnetnog talasa, osnovnim formulama i domaćom zadaćom (Prilog 1)

    Video materijal iz elektronskog dodatka kompletu za fiziku, 11. razred ( UMK Myakishev G. Ya., Bukhovtsev B.B.)

AKTIVNOSTI NASTAVNIKA

Informaciona kartica

STUDENTSKA AKTIVNOST

Motivaciona faza – Uvod u temu lekcije

Dragi momci! Danas ćemo početi proučavati posljednji odjeljak u velikoj temi “Oscilacije i valovi” u vezi s elektromagnetnim valovima.

Saznaćemo istoriju njihovog otkrića i upoznati naučnike koji su u tome učestvovali. Hajde da saznamo kako smo uspeli da dobijemo elektromagnetni talas po prvi put. Proučimo jednadžbe, grafikone i svojstva elektromagnetnih valova.

Prvo, prisjetimo se šta je talas i koje vrste talasa poznajete?

Talas je oscilacija koja se širi tokom vremena. Talasi su mehanički i elektromagnetski.

Mehanički talasi su raznovrsni, šire se u čvrstim, tečnim, gasovitim medijima, možemo li ih detektovati našim čulima? Navedite primjere.

Da, u čvrstim medijima to mogu biti zemljotresi, vibracije žica muzičkih instrumenata. U tečnostima su valovi na moru, u plinovima oni su širenje zvukova.

Sa elektromagnetnim talasima stvari nisu tako jednostavne. Vi i ja smo u učionici i uopće ne osjećamo niti shvaćamo koliko elektromagnetnih valova prožima naš prostor. Možda neko od vas već može dati primjere valova koji su ovdje prisutni?

Radio talasi

TV talasi

- Wi- Fi

Light

Zračenje mobilnih telefona i kancelarijske opreme

Elektromagnetno zračenje uključuje radio talase i sunčevu svetlost, rendgenske zrake i zračenje i još mnogo toga. Kada bismo ih vizualizirali, ne bismo mogli vidjeti jedni druge iza tako ogromnog broja elektromagnetnih valova. Oni služe kao glavni nosilac informacija u savremenom životu, a ujedno su i snažan negativni faktor koji utiče na naše zdravlje.

Organizacija aktivnosti učenika za kreiranje definicije elektromagnetnog talasa

Danas ćemo krenuti stopama velikih fizičara koji su otkrili i generirali elektromagnetne valove, saznati koje jednačine ih opisuju i istražiti njihova svojstva i karakteristike. Zapisujemo temu lekcije "Elektromagnetski talasi"

Ti i ja to znamo 1831. Engleski fizičar Michael Faraday eksperimentalno je otkrio fenomen elektromagnetne indukcije. Kako se manifestuje?

Ponovimo jedan od njegovih eksperimenata. Koja je formula zakona?

Učenici izvode Faradejev eksperiment

Vremenski promjenjivo magnetsko polje dovodi do pojave inducirane emf i inducirane struje u zatvorenom kolu.

Da, indukovana struja se pojavljuje u zatvorenom kolu, koju registrujemo pomoću galvanometra

Tako je Faraday eksperimentalno pokazao da postoji direktna dinamička veza između magnetizma i elektriciteta. U isto vrijeme, Faraday, koji nije dobio sistematsko obrazovanje i imao je malo znanja o matematičkim metodama, nije mogao potvrditi svoje eksperimente s teorijom i matematičkim aparatom. U tome mu je pomogao još jedan izvanredni engleski fizičar James Maxwell (1831-1879).

Maxwell je dao nešto drugačije tumačenje zakona elektromagnetne indukcije: „Svaka promjena magnetskog polja stvara vrtložno električno polje u okolnom prostoru, čije su linije sile zatvorene.“

Dakle, čak i ako vodič nije zatvoren, promjena magnetskog polja uzrokuje induktivno električno polje u okolnom prostoru, koje je vrtložno polje. Koja su svojstva vrtlog polja?

Svojstva vrtlog polja:

    Njegove linije napetosti su zatvorene

    Nema izvora

Također treba dodati da rad sila polja da pomjere probni naboj duž zatvorene putanje nije nula, već inducirana emf.

Osim toga, Maxwell pretpostavlja postojanje inverznog procesa. Šta mislite koji?

“Vremenski promjenjivo električno polje stvara magnetno polje u okolnom prostoru”

Kako možemo dobiti električno polje koje se mijenja u vremenu?

Vremenski promenljiva struja

Šta je aktuelno?

Struja - uređeno kretanje nabijenih čestica, u metalima - elektroni

Kako bi se onda trebali kretati da bi struja bila naizmjenična?

Sa ubrzanjem

Tako je, ubrzani pokretni naboji izazivaju naizmjenično električno polje. Sada pokušajmo snimiti promjenu magnetskog polja pomoću digitalnog senzora, dovodeći ga do žica s naizmjeničnom strujom

Učenik provodi eksperiment kako bi uočio promjene u magnetskom polju

Na ekranu kompjutera uočavamo da kada se senzor dovede do izvora naizmenične struje i fiksira, dolazi do kontinuirane oscilacije magnetnog polja, što znači da se naizmenično električno polje pojavljuje okomito na njega.

Tako nastaje kontinuirani međusobno povezani niz: promjenjivo električno polje stvara naizmjenično magnetsko polje, koje svojom pojavom opet stvara promjenjivo električno polje itd.

Jednom kada u određenoj tački započne proces promjene elektromagnetnog polja, ono će kontinuirano hvatati sve više i više novih područja okolnog prostora. Promjenjivo elektromagnetno polje koje se širi je elektromagnetski talas.

Dakle, Maxwellova hipoteza je bila samo teorijska pretpostavka koja nije imala eksperimentalnu potvrdu, ali je na temelju nje uspio izvesti sistem jednadžbi koje opisuju međusobne transformacije magnetskog i električnog polja, pa čak i odrediti neka njihova svojstva.

Djeci se daju lične kartice sa grafikonima i formulama.

Maxwellove kalkulacije:

Organizacija aktivnosti učenika za određivanje brzine elektromagnetnih talasa i drugih karakteristika

ξ-dielektrična konstanta supstance, razmatrali smo kapacitivnost kondenzatora,- magnetska permeabilnost tvari – karakteriziramo magnetna svojstva tvari, pokazuje da li je supstanca paramagnetna, dijamagnetna ili feromagnetna

    Izračunajmo brzinu elektromagnetnog talasa u vakuumu, tada je ξ = =1

Momci računaju brzinu , nakon čega provjeravamo sve na projektoru

    Dužina, frekvencija, ciklička frekvencija i period valnih oscilacija se izračunavaju pomoću formula poznatih iz mehanike i elektrodinamike, podsjetite me na njih.

Momci zapisuju formule λ=υT na tabli, , , provjerite njihovu ispravnost na slajdu

Maxwell je također teoretski izveo formulu za energiju elektromagnetnog vala, i . W Em ~ 4 To znači da za lakše detektovanje talasa on mora biti visoke frekvencije.

Maxwellova teorija izazvala je odjek u fizičkoj zajednici, ali on nije imao vremena da eksperimentalno potvrdi svoju teoriju, tada je palicu preuzeo njemački fizičar Heinrich Hertz (1857-1894). Iznenađujuće, Hertz je želio opovrgnuti Maxwellovu teoriju, za to je došao do jednostavnog i genijalnog rješenja za proizvodnju elektromagnetnih valova.

Prisjetimo se gdje smo već uočili međusobnu transformaciju električne i magnetske energije?

U oscilatornom kolu.

IN zatvoreno oscilatorno kolo, od čega se sastoji?

Ovo je krug koji se sastoji od kondenzatora i zavojnice u kojem se javljaju međusobne elektromagnetske oscilacije

Tako je, samo su se oscilacije dešavale "unutar" kola, a glavni zadatak naučnika je bio da te oscilacije generišu u svemir i, naravno, da ih registruju.

To smo već reklienergija talasa je direktno proporcionalna četvrtom stepenu frekvencije . W Em~ν 4 . To znači da za lakše detektovanje talasa on mora biti visoke frekvencije. Koja formula određuje frekvenciju u oscilatornom krugu?

Frekvencija zatvorene petlje

Šta možemo učiniti da povećamo frekvenciju?

Smanjite kapacitet i induktivnost, što znači smanjenje broja zavoja u zavojnici i povećanje udaljenosti između ploča kondenzatora.

Zatim je Hertz postupno "ispravio" oscilatorni krug, pretvarajući ga u štap, koji je nazvao "vibrator".

Vibrator se sastojao od dvije provodljive kugle prečnika 10-30 cm, postavljene na krajeve žičane šipke izrezane u sredini. Krajevi polovica šipke na mjestu reza završavali su malim poliranim kuglicama, tvoreći iskrište od nekoliko milimetara.

Sfere su bile spojene na sekundarni namotaj Ruhmkorffove zavojnice, koja je bila izvor visokog napona.

Ruhmkorffova induktorica stvarala je vrlo visok napon, reda desetine kilovolti, na krajevima svog sekundarnog namotaja, puneći sfere naelektrisanjem suprotnih predznaka. U određenom trenutku napon između kuglica bio je veći od probojnog napona i aelektrična iskra , emitovani su elektromagnetni talasi.

Prisjetimo se fenomena grmljavine. Munja je ista iskra. Kako se pojavljuju munje?

Crtež na tabli:

Ako se pojavi velika razlika potencijala između zemlje i neba, krug se "zatvara" - nastaje munja, struja se provodi kroz zrak, unatoč činjenici da je dielektrik, a napon se uklanja.

Tako je Hertz uspio generirati uh val. No, za tu svrhu, Hertz je kao detektor ili prijemnik koristio prsten (ponekad pravougaonik) sa razmakom - iskrištem, koji se mogao podesiti. Naizmjenično elektromagnetno polje pobuđivalo je naizmjeničnu struju u detektoru, ako su se frekvencije vibratora i prijemnika poklopile, došlo je do rezonancije i pojavila se i iskra u prijemniku, koja se mogla vizualno detektirati.

Hertz je svojim eksperimentima dokazao:

1) postojanje elektromagnetnih talasa;

2) talasi se dobro odbijaju od provodnika;

3) odredio brzinu talasa u vazduhu (približno je jednaka brzini u vakuumu).

Provedimo eksperiment refleksije elektromagnetnih valova

Prikazan je eksperiment refleksije elektromagnetnih talasa: studentov telefon se stavlja u potpuno metalnu posudu i prijatelji pokušavaju da ga pozovu.

Signal ne prolazi

Momci iz iskustva odgovaraju na pitanje zašto nema mobilnog signala.

Sada pogledajmo video o svojstvima elektromagnetnih valova i snimimo ih.

    Refleksija e-talasa: valovi se dobro reflektiraju od metalnog lima, a upadni ugao jednak je kutu refleksije

    Apsorpcija talasa: um talasi se delimično apsorbuju kada prolaze kroz dielektrik

    Refrakcija talasa: um talasi menjaju svoj smer kada se kreću od vazduha do dielektrika

    Interferencija valova: dodavanje valova iz koherentnih izvora (detaljnije ćemo proučiti u optici)

    Difrakcija talasa - savijanje prepreka talasima

Prikazan je video fragment “Svojstva elektromagnetnih talasa”.

Danas smo naučili istoriju elektromagnetnih talasa od teorije do eksperimenta. Dakle, odgovorite na pitanja:

    Ko je otkrio zakon o pojavi električnog polja kada se magnetsko polje promijeni?

    Koja je bila Maksvelova hipoteza o stvaranju promenljivog magnetnog polja?

    Šta je elektromagnetski talas?

    Na kojim je vektorima izgrađen?

    Šta se dešava sa talasnom dužinom ako se frekvencija vibracija naelektrisanih čestica udvostruči?

    Koja svojstva elektromagnetnih talasa pamtite?

Odgovori momaka:

    Faraday je eksperimentalno otkrio zakon emf, a Maxwell je proširio ovaj koncept u teoriji

    Električno polje koje se mijenja u vremenu stvara magnetsko polje u okolnom prostoru

    Širenje u prostoruelektromagnetna polje

    Napetost, magnetna indukcija, brzina

    Smanjiće se za 2 puta

    Refleksija, refrakcija, interferencija, difrakcija, apsorpcija

Elektromagnetski valovi imaju različite namjene u zavisnosti od njihove frekvencije ili talasne dužine. One donose dobrobit i štetu čovječanstvu, pa za sljedeću lekciju pripremite poruke ili prezentacije na sljedeće teme:

    Kako da koristim elektromagnetne talase

    Elektromagnetno zračenje u svemiru

    Izvori elektromagnetnog zračenja u mom domu, njihov uticaj na zdravlje

    Utjecaj elektromagnetnog zračenja mobilnog telefona na ljudsku fiziologiju

    Elektromagnetno oružje

I također riješite sljedeće probleme za sljedeću lekciju:

    i =0.5 cos 4*10 5 π t

Zadaci na karticama.

Hvala vam na pažnji!

Aneks 1

Elektromagnetski talas:

f/m – električna konstanta

1,25664*10 -6 H/m – magnetna konstanta

Zadaci:

    Frekvencija emitovanja radio stanice Mayak u moskovskoj regiji je 67,22 MHz. Na kojoj talasnoj dužini radi ova radio stanica?

    Jačina struje u otvorenom oscilatornom kolu varira u skladu sa zakonomi =0.5 cos 4*10 5 π t . Pronađite talasnu dužinu emitovanog talasa.

PLAN LEKCIJE

na ovu temu" Elektromagnetno polje i elektromagnetski talasi"

Puno ime

Kosintseva Zinaida Andreevna

Mjesto rada

DF GBPOU "KTK"

Naziv posla

nastavnik

Stavka

5.

Klasa

2. godina zanimanja „Kuvar, poslastičar“, „Zavarivač“

6.

7.

Predmet

Broj lekcije u temi

Elektromagnetno polje i elektromagnetski talasi. 27

8.

Osnovni tutorijal

V.F. Dmitrieva Fizika: za struke i tehničke specijalnosti: za opšte obrazovanje. ustanove: udžbenički početak. i srednjeg stručnog obrazovanja Udžbenik: -6. izd. ster.-M.: Izdavački centar "Akademija", 2013.-448 str.

Ciljevi lekcije:

- edukativni

    ponoviti i sumirati znanja učenika u dijelu „Elektrodinamika“;

- razvoj

    promicati razvoj sposobnosti analiziranja, postavljanja hipoteza, pretpostavki, predviđanja, posmatranja i eksperimentiranja;

    razvoj sposobnosti samopoštovanja i introspekcije vlastite mentalne aktivnosti i njenih rezultata;

    provjeriti stepen samostalnog mišljenja učenika u primjeni postojećih znanja u različitim situacijama.

- edukativni

    podsticanje kognitivnog interesa za predmet i okolne pojave;

    negovanje takmičarskog duha, odgovornosti prema drugovima, kolektivizma.

Vrsta lekcije Lekcija - seminar

Oblici studentskog rada verbalni prijenos informacija i slušna percepcija informacija; vizualni prijenos informacija i vizualna percepcija informacija; prijenos informacija kroz praktične aktivnosti; stimulacija i motivacija; metode kontrole i samokontrole.

Objekti podučavati I : Prezentacije; izvještaji; križaljke; zadaci za testiranu anketu;

Oprema: PC, ID, projektor, prezentacijeppt, video lekcija, PC-učeničke radne stanice, testovi.

Struktura i tok lekcije

Tabela 1.

STRUKTURA I TOK ČASA

Faza lekcije

Naziv korištenih EOR-ova

(sa naznakom serijskog broja iz tabele 2)

Aktivnosti nastavnika

(označavanje radnji s ESM-om, na primjer, demonstracija)

Aktivnost učenika

Vrijeme

(po minuti)

Organiziranje vremena

Pozdrav studentima

Pozdravite učitelja

Ažuriranje i ispravljanje osnovnih znanja

1. Oginsky “Polonaise”

Prikazuje video snimak.

Uvodna reč nastavnika

1,. Prezentacija, Slajd br. 1 Slajd br. 2

Najava teme časa

Deklaracija ciljeva i zadataka

Slušajte i snimajte

Ponavljanje

    Usmeni rad sa definicijama i zakonima

    Test anketa – Test br. 20

Distribuira po radnim mjestima

Uključuje elektronski dnevnik testiranja

Prikazuje test na ekranu

Rad na računaru i notebook računarima

Doživljavanje novih otkrića

Studentski nastupi

1. Briljantni samouk Michael Faraday.

2. Osnivač teorije elektromagnetnog polja James Maxwell.

3. Veliki eksperimentator Heinrich Hertz.

4. Aleksandar Popov. Radio istorija

5. Gledanje videa o A.S. Popovu

1, Prezentacija, Slajd br. 4

2. Prezentacija

3. Prezentacija

4. Prezentacija

5. Prezentacija

Koordinira učinak učenika, pomaže i ocjenjuje

Slušajte govor učenika, vodite bilješke, postavljajte pitanja,

Okarakterizirajte performanse

Refleksija

6, Ukrštenica

Organizuje rad na računaru

Rješavanje ukrštenice

Sumiranje lekcije

1, Slajd br. 10

Daje ocjene i sumira

Dajte ocjene

Zadaća

1, slajd br. 5

Objašnjava domaći zadatak - Prezentacija ""

Zapišite zadatak

Dodatak planu časa

na temu "Elektromagnetno polje i elektromagnetski talasi"

Tabela 2.

LISTA EOR-a KORIŠĆENIH U OVOJ LEKCIJI

Naziv resursa

Vrsta, vrsta resursa

Obrazac za podnošenje informacija (ilustracija, prezentacija, video klipovi, test, model, itd.)

Oginsky "Poloneza"

informativni

video klip

Sažetak lekcije

informativni

prezentacija

Izvještaj “Sjajni samouk Michael Faraday”

informativni

prezentacija

Prijavi " Osnivač teorije elektromagnetnog polja James Maxwell»

informativni

prezentacija

Veliki eksperimentator Hajnrih Herc"

informativni

prezentacija

„Aleksandar Popov. Radio istorija"

informativni

Prezentacija

Video lekcija Princip radiotelefonske komunikacije. Najjednostavniji radio prijemnik.

Lkvideouroki.net. br. 20.

Film "A.S.Popov"

informativni

Internet tehnologija

www.youtube.com

Izum radija, Popov Aleksandar Stepanovič, Popov.

Praktično

MyTest program.

br. 20 Lkvideouroki .net .

Ukrštenica

Praktično

prezentacija

Nastavnik fizike, Srednja škola br. 42, Belgorod

Kokorina Aleksandra Vladimirovna

klasa: 9

Stavka: fizika.

datuma:

Predmet:“Elektromagnetno polje (EMF).”

Vrsta: kombinovana lekcija .

Ciljevi lekcije:

edukativni:

- vjerovati ranije stečenom znanju;

- osigurati percepciju, razumijevanje, primarno pamćenje pojma „elektromagnetnog polja“, odnosa električnog i magnetnog polja;

— organizira aktivnosti učenika za reprodukciju naučenih informacija;

edukativni:

— vaspitanje radnih motiva i savjestan odnos prema radu;

- njegovanje motiva za učenje i pozitivnog stava prema znanju;

— pokazivanje uloge fizičkog eksperimenta i fizičke teorije u proučavanju fizičkih pojava.

razvijanje:

— razvoj vještina za kreativan pristup rješavanju širokog spektra problema;

— razvoj vještina za samostalno djelovanje;

Sredstva obrazovanja:

- tabla i kreda;

Nastavne metode:

- objašnjavajuće - ilustrativno .

Struktura lekcije (etape):

    organizacioni trenutak (2 min);

    ažuriranje osnovnih znanja (10 min);

    učenje novog gradiva (17 min);

    provjera razumijevanja primljenih informacija (8 min);

    sumiranje lekcije (2 min);

    informacije o domaćem zadatku (1 min).

Tokom nastave

Aktivnosti nastavnika

Aktivnosti učenika

- pozdrav "Zdravo momci".

evidentiranje odsustva"Ko je odsutan danas?"

- pozdravi učitelja "Zdravo"

- poziva dežurni one koji su odsutni

- fizički diktat

Na stolovima imate prazne listove papira, potpišite ih i označite broj opcije na kojoj sjedite. Diktirati ću vam pitanja jedno po jedno, prvo za 1., a zatim za 2. opciju. Budi pazljiv "

Pitanja za diktat:

1.1 Šta generiše magnetno polje?

1.2 Kako možete jasno prikazati magnetno polje?

2.1 Kakva je priroda NMP linija?

2.2 Kakva je priroda linija oružja za masovno uništenje?

3.1 Magnetna indukcija: formula, mjerne jedinice.

3.2 Vodovi magnetne indukcije su...

4.1 Šta se može odrediti pravilom desne ruke?

4.2 Šta se može odrediti pravilom lijeve ruke?

5.1 EMR fenomen je...

5.2 Naizmjenična struja je...

Sada prenesite svoj rad prvim stolovima. Ko je pao u zadatku?”(razgovarajte o pitanjima koja su izazvala poteškoće)

- potpišite rad

- odgovori na pitanja

odgovori:

1.1 pokretni naboji

1.2 magnetne linije

2.1 su zakrivljeni, njihova gustoća se mijenja

2.2 paralelne jedna s drugom, smještene na istoj frekvenciji

3.1 B = F/(I l), T

3.2 linije, tangente na koje se u svakoj tački polja poklapaju sa smjerom vektora magnetske indukcije

5.1 kada se mijenja mp koji prolazi kroz krug zatvorenog vodiča, u vodiču nastaje struja

5.2 struja koja se periodično mijenja po veličini i smjeru tokom vremena

- razgovor sa razredom:

Tema našeg časa ispisana je na tabli. A ko mi može reći koje godine i ko je otkrio EMP fenomen?”

Šta je?"

Pod kojim uslovima struja teče u provodniku?"

To znači da možemo zaključiti da naizmjenično magnetsko polje koje prodire u zatvoreni krug provodnika stvara u njemu električno polje pod čijim utjecajem nastaje inducirana struja.”

— objašnjenje novog materijala:

Na osnovu ovog zaključka, Džejms Klerk Maksvel 1865 stvorio kompleksnu teoriju EMF. Razmotrićemo samo njegove glavne odredbe. Zapisati."

Osnovne odredbe teorije:

3. Ove varijable koje generiraju jedna drugu e.p. i m.p. formiraju EMF.

5. (sljedeća lekcija)

Konstantno m.p se stvara oko naboja koji se kreću konstantnom brzinom. Ali ako se naboji pokreću ubrzano, tada je m.p. periodično se menja.

Varijabilna e.p. stvara varijablu m.p. u prostoru, koja zauzvrat generiše varijablu e.p. itd."

Varijabilna e.p. – vrtlog.

- usmeno odgovarati na pitanja nastavnika

Majkl Faradej, 1831"

kada se mp koji prolazi kroz konturu zatvorenog provodnika promeni, u provodniku nastaje struja”

ako sadrži e.p.”

- zapišite u svesku šta nastavnik diktira

Sada nacrtajte tabelu u svojim sveskama kao na tabli. Hajde da ga popunimo zajedno.”

polje

param.

poređenja

vortex

elektrostatički

karakter

periodično se menja tokom vremena

ne mijenja se tokom vremena

izvor

ubrzana punjenja

stacionarna punjenja

dalekovodi

zatvoreno

početi sa “+”; završiti sa "-"

- nacrtajte tabelu i popunite je zajedno sa nastavnikom

- generalizacija i sistematizacija:

Dakle, o kom važnom konceptu ste danas naučili na času? Tako je, sa konceptom EMF. Šta možete reći o njemu?”

- odraz: „ko ima poteškoća u razumijevanju gradiva?“

Procjena ponašanja i učinka pojedinih učenika u učionici.

- odgovori na pitanja

- informacije o domaćem zadatku

Ҥ 51 , pripremite se za test. Lekcija je gotova. Zbogom".

- zapišite domaći zadatak

- oprostite se od učiteljice: "Zbogom".

Učenici treba da imaju u svojim sveskama:

Tema: “Elektromagnetno polje (EMF)”

1856 - J.C. Maxwell je stvorio teoriju EMF-a.

Osnovne odredbe teorije:

1. Svaka promjena tokom vremena m.p. dovodi do pojave varijable e.p.

2. Svaka promjena tokom vremena e.p. dovodi do pojave promjenljive m.p.

3. Ove varijable koje generiraju jedna drugu e.p. i m.p. formu EMF.

4. Izvor EMF – ubrzani pokretni naboji.

Varijabilna e.p. – vrtlog.

poređenja

vortex

elektrostatički

karakter

periodično se menja tokom vremena

ne mijenja se tokom vremena

izvor

ubrzana punjenja

stacionarna punjenja

dalekovodi

zatvoreno

početi sa “+”; završiti sa “-”

klasa: 11

Ciljevi lekcije:

  • upoznati učenike sa karakteristikama širenja elektromagnetnih talasa;
  • razmotriti faze stvaranja teorije elektromagnetnog polja i eksperimentalne potvrde ove teorije;

Obrazovni: upoznati učenike sa zanimljivim epizodama iz biografije G. Hertza, M. Faradaya, Maxwella D.K., Oersteda H.K., A.S. Popova;

Razvojni: promovirati razvoj interesovanja za predmet.

Demonstracije: slajdovi, video.

TOKOM NASTAVE

Org. Momenat.

Aneks 1. (SLAJD br. 1). Danas ćemo se upoznati sa karakteristikama širenja elektromagnetskih valova, uočiti faze stvaranja teorije elektromagnetskog polja i eksperimentalne potvrde ove teorije, te se zadržati na nekim biografskim podacima.

Ponavljanje.

Da bismo postigli ciljeve lekcije, moramo ponoviti neka pitanja:

Šta je talas, posebno mehanički talas? (Širenje vibracija čestica materije u prostoru)

Koje količine karakterišu talas? (talasna dužina, brzina talasa, period oscilovanja i frekvencija oscilovanja)

Kakav je matematički odnos između talasne dužine i perioda oscilovanja? (talasna dužina je jednaka proizvodu brzine talasa i perioda oscilovanja)

(SLAJD br. 2)

Učenje novog gradiva.

Elektromagnetski talas je na mnogo načina sličan mehaničkom talasu, ali postoje i razlike. Glavna razlika je u tome što ovaj val ne zahtijeva medij za širenje. Elektromagnetski talas je rezultat širenja naizmeničnog električnog i naizmeničnog magnetnog polja u prostoru, tj. elektromagnetno polje.

Elektromagnetno polje stvaraju ubrzano kretanje nabijenih čestica. Njegovo prisustvo je relativno. Ovo je posebna vrsta materije, koja je kombinacija varijabilnih električnih i magnetskih polja.

Elektromagnetski talas je širenje elektromagnetnog polja u svemiru.

Razmotrimo graf širenja elektromagnetnog talasa.

(SLAJD br. 3)

Dijagram širenja elektromagnetnog talasa prikazan je na slici. Neophodno je zapamtiti da su vektori jačine električnog polja, magnetne indukcije i brzine širenja talasa međusobno okomiti.

Faze stvaranja teorije elektromagnetnog talasa i njena praktična potvrda.

Hans Christian Oersted (1820.) (SLAJD br. 4) Danski fizičar, stalni sekretar Kraljevskog danskog društva (od 1815).

Od 1806. - profesor na ovom univerzitetu, od 1829. ujedno i direktor Politehničke škole u Kopenhagenu. Oerstedova djela posvećena su elektricitetu, akustici i molekularnoj fizici.

(SLAJD br. 4). Godine 1820. otkrio je djelovanje električne struje na magnetsku iglu, što je dovelo do pojave novog polja fizike - elektromagnetizma. Ideja o odnosu između različitih prirodnih pojava karakteristična je za Oerstedovo naučno stvaralaštvo; posebno je bio jedan od prvih koji je izrazio ideju da je svjetlost elektromagnetna pojava. 1822-1823, nezavisno od J. Fouriera, ponovo je otkrio termoelektrični efekat i izgradio prvi termoelement. Eksperimentalno je proučavao kompresibilnost i elastičnost tekućina i plinova i izumio pijezometar (1822). Sprovedeno istraživanje o akustici, posebno pokušano otkriti pojavu električnih pojava zbog zvuka. Istražena odstupanja od Boyle-Mariotteovog zakona.

Ørsted je bio sjajan predavač i popularizator, organizovao je Društvo za širenje prirodnih nauka 1824. godine, stvorio prvu fizičku laboratoriju u Danskoj i doprinio poboljšanju nastave fizike u obrazovnim institucijama u zemlji.

Oersted je počasni član mnogih akademija nauka, posebno Sankt Peterburgske akademije nauka (1830).

Michael Faraday (1831.)

(SLAJD br. 5)

Briljantni naučnik Michael Faraday bio je samouk. U školi sam stekao samo osnovno obrazovanje, a onda sam, zbog životnih problema, radio i uporedo učio naučnopopularnu literaturu iz fizike i hemije. Kasnije je Faraday postao laboratorijski asistent tada poznatog hemičara, a zatim je nadmašio svog učitelja i učinio mnogo važnih stvari za razvoj takvih nauka kao što su fizika i hemija. Godine 1821. Michael Faraday je saznao za Oerstedovo otkriće da električno polje stvara magnetno polje. Nakon što je razmišljao o ovom fenomenu, Faraday je krenuo da stvori električno polje iz magnetnog polja i nosio je magnet u džepu kao stalni podsjetnik. Deset godina kasnije, svoj moto je sproveo u delo. Magnetizam pretvorio u elektricitet: ~ magnetno polje stvara ~ električnu struju

(SLAJD br. 6) Teoretičar je izveo jednačine koje nose njegovo ime. Ove jednačine govore da naizmjenična magnetska i električna polja stvaraju jedno drugo. Iz ovih jednačina slijedi da naizmjenično magnetsko polje stvara vrtložno električno polje, koje stvara naizmjenično magnetno polje. Osim toga, u njegovim jednačinama postojala je konstantna vrijednost - ovo je brzina svjetlosti u vakuumu. One. iz ove teorije je sledilo da se elektromagnetski talas širi u svemiru brzinom svetlosti u vakuumu. Zaista briljantan rad cijenili su mnogi naučnici tog vremena, a A. Ajnštajn je rekao da je najfascinantnija stvar tokom njegovih studija bila Maksvelova teorija.

Heinrich Hertz (1887)

(SLAJD br. 7). Hajnrih Herc je rođen kao bolešljivo dete, ali je postao veoma pametan učenik. Svidjeli su mu se svi predmeti koje je učio. Budući naučnik volio je pisati poeziju i raditi na strugu. Nakon što je završio srednju školu, Hertz je upisao višu tehničku školu, ali nije želio da bude uski specijalista i ušao je na Univerzitet u Berlinu da postane naučnik. Nakon upisa na univerzitet, Heinrich Hertz je nastojao studirati u laboratoriju za fiziku, ali za to je bilo potrebno riješiti konkurentske probleme. I krenuo je u rješavanje sljedećeg problema: da li električna struja ima kinetičku energiju? Ovaj rad je zamišljen da traje 9 mjeseci, ali ga je budući naučnik riješio za tri mjeseca. Istina, negativan rezultat je netačan sa moderne tačke gledišta. Tačnost mjerenja je morala biti povećana hiljadama puta, što u to vrijeme nije bilo moguće.

Još kao student Hertz je odbranio doktorsku disertaciju sa odličnim ocjenama i dobio zvanje doktora. Imao je 22 godine. Naučnik se uspješno bavio teorijskim istraživanjima. Proučavajući Maxwellovu teoriju, pokazao je visoke eksperimentalne vještine, stvorio uređaj koji se danas zove antena i uz pomoć odašiljačkih i prijemnih antena stvarao i primao elektromagnetne valove i proučavao sva svojstva ovih valova. Shvatio je da je brzina prostiranja ovih talasa konačna i jednaka brzini svetlosti u vakuumu. Nakon proučavanja svojstava elektromagnetnih valova, dokazao je da su oni slični svojstvima svjetlosti. Nažalost, ovaj robot je potpuno potkopao zdravlje naučnika. Prvo su mi otkazale oči, a onda su me počele boljeti uši, zubi i nos. Umro je ubrzo nakon toga.

Heinrich Hertz je završio ogroman posao koji je započeo Faraday. Maxwell je transformirao Faradayeve ideje u matematičke formule, a Hertz je transformirao matematičke slike u vidljive i čujne elektromagnetne valove. Slušajući radio, gledajući televizijske programe, moramo zapamtiti ovu osobu. Nije slučajno što je jedinica frekvencije oscilovanja nazvana po Hercu, a nije nimalo slučajno da su prve riječi koje je prenio ruski fizičar A.S. Popov koristeći bežičnu komunikaciju bili su "Hajnrih Herc", šifrovani Morzeovom azbukom.

Popov Aleksandar Sergejevič (1895)

Popov je poboljšao prijemnu i predajnu antenu i u početku se komunikacija odvijala na daljinu

(SLAJD br. 8) 250 m, zatim 600 m, a 1899. godine naučnik je uspostavio radio komunikaciju na udaljenosti od 20 km, a 1901. - na 150 km. Godine 1900. radio komunikacije su pomogle u izvođenju spasilačkih operacija u Finskom zaljevu. Godine 1901. talijanski inženjer G. Markoni izveo je radio komunikaciju preko Atlantskog okeana. (Slajd br. 9). Pogledajmo video snimak koji govori o nekim svojstvima elektromagnetnog talasa. Nakon pregleda odgovaraćemo na pitanja.

Zašto sijalica u prijemnoj anteni menja svoj intenzitet kada se ubaci metalna šipka?

Zašto se to ne dešava kada se metalna šipka zamijeni staklenom?

Konsolidacija.

Odgovori na pitanja:

(SLAJD br. 10)

Šta je elektromagnetski talas?

Ko je stvorio teoriju elektromagnetnih talasa?

Ko je proučavao svojstva elektromagnetnih talasa?

Popunite tabelu odgovora u svojoj bilježnici, označavajući broj pitanja.

(SLAJD br. 11)

Kako talasna dužina zavisi od frekvencije vibracije?

(Odgovor: obrnuto proporcionalno)

Šta će se dogoditi sa talasnom dužinom ako se period oscilovanja čestice udvostruči?

(Odgovor: Povećaće se za 2 puta)

Kako će se promijeniti frekvencija oscilacije zračenja kada val pređe u gušći medij?

(Odgovor: Neće se promijeniti)

Šta uzrokuje emisiju elektromagnetnih valova?

(Odgovor: Nabijene čestice se kreću ubrzano)

Gdje se koriste elektromagnetski valovi?

(Odgovor: mobilni telefon, mikrovalna pećnica, televizija, radio, itd.)

(odgovori na pitanja)

Hajde da rešimo problem.

Televizijski centar Kemerovo emituje dva talasa nosioca: talas nosioca slike sa frekvencijom zračenja od 93,4 kHz i talas nosača zvuka sa frekvencijom od 94,4 kHz. Odredite talasne dužine koje odgovaraju ovim frekvencijama zračenja.

(SLAJD br. 12)

Zadaća.

(SLAJD br. 13) Potrebno je pripremiti izvještaje o različitim vrstama elektromagnetnog zračenja, navodeći njihove karakteristike i govoriti o njihovoj primjeni u ljudskom životu. Poruka mora biti duga pet minuta.

  1. Vrste elektromagnetnih talasa:
  2. Zvučni frekvencijski talasi
  3. Radio talasi
  4. Mikrotalasno zračenje
  5. Infracrveno zračenje
  6. Vidljivo svjetlo
  7. Ultraljubičasto zračenje
  8. rendgensko zračenje
  9. Gama zračenje

Rezimirajući.

(SLAJD br. 14) Hvala Vam na pažnji i Vašem radu!!!

Književnost.

  1. Kasyanov V.A. Fizika 11. razred. - M.: Drfa, 2007
  2. Rymkevich A.P. Zbirka zadataka iz fizike. - M.: Prosvjeta, 2004.
  3. Maron A.E., Maron E.A. Fizika 11. razred. Didaktički materijali. - M.: Drfa, 2004.
  4. Tomilin A.N. Svijet električne energije. - M.: Drfa, 2004.
  5. Enciklopedija za djecu. fizika. - M.: Avanta+, 2002.
  6. Yu. A. Khramov Physics. Biografski priručnik, - M., 1983.